596 research outputs found

    On the Higher-Spin Spectrum in Large N Chern-Simons Vector Models

    Full text link
    Chern-Simons gauge theories coupled to massless fundamental scalars or fermions define interesting non-supersymmetric 3d CFTs that possess approximate higher-spin symmetries at large N. In this paper, we compute the scaling dimensions of the higher-spin operators in these models, to leading order in the 1/N expansion and exactly in the 't Hooft coupling. We obtain these results in two independent ways: by using conformal symmetry and the classical equations of motion to fix the structure of the current non-conservation, and by a direct Feynman diagram calculation. The full dependence on the 't Hooft coupling can be restored by using results that follow from the weakly broken higher-spin symmetry. This analysis also allows us to obtain some explicit results for the non-conserved, parity-breaking structures that appear in planar three-point functions of the higher-spin operators. At large spin, we find that the anomalous dimensions grow logarithmically with the spin, in agreement with general expectations. This logarithmic behavior disappears in the strong coupling limit, where the anomalous dimensions turn into those of the critical O(N) or Gross-Neveu models, in agreement with the conjectured 3d bosonization duality.Comment: 52 pages, 7 figures. v3: Minor correction

    Correlators of supersymmetric Wilson-loops, protected operators and matrix models in N=4 SYM

    Get PDF
    We study the correlators of a recently discovered family of BPS Wilson loops in N=4{\cal N}=4 supersymmetric U(N) Yang-Mills theory. When the contours lie on a two-sphere in the space-time, we propose a closed expression that is valid for all values of the coupling constant gg and for any rank NN, by exploiting the suspected relation with two-dimensional gauge theories. We check this formula perturbatively at order O(g4){\cal O}(g^4) for two latitude Wilson loops and we show that, in the limit where one of the loops shrinks to a point, logarithmic corrections in the shrinking radius are absent at O(g6){\cal O}(g^6). This last result strongly supports the validity of our general expression and suggests the existence of a peculiar protected local operator arising in the OPE of the Wilson loop. At strong coupling we compare our result to the string dual of the N=4{\cal N}=4 SYM correlator in the limit of large separation, presenting some preliminary evidence for the agreement.Comment: 20 page, 8 figure

    Quantum dispersion relations for excitations of long folded spinning superstring in AdS_5 x S^5

    Full text link
    We use AdS_5 x S^5 superstring sigma model perturbation theory to compute the leading one-loop corrections to the dispersion relations of the excitations near a long spinning string in AdS. This investigation is partially motivated by the OPE-based approach to the computation of the expectation value of null polygonal Wilson loops suggested in arXiv:1006.2788. Our results are in partial agreement with the recent asymptotic Bethe ansatz computation in arXiv:1010.5237. In particular, we find that the heaviest AdS mode (absent in the ABA approach) is stable and has a corrected one-loop dispersion relation similar to the other massive modes. Its stability might hold also at the next-to-leading order as we suggest using a unitarity-based argument.Comment: 22 pages, 3 figures. v3: small corrections and a comment added in sec. 4.

    "Short" spinning strings and structure of quantum AdS_5 x S^5 spectrum

    Full text link
    Using information from the marginality conditions of vertex operators for the AdS_5 x S^5 superstring, we determine the structure of the dependence of the energy of quantum string states on their conserved charges and the string tension proportional to lambda^(1/2). We consider states on the leading Regge trajectory in the flat space limit which carry one or two (equal) spins in AdS_5 or S^5 and an orbital momentum in S^5, with Konishi multiplet states being particular cases. We argue that the coefficients in the energy may be found by using a semiclassical expansion. By analyzing the examples of folded spinning strings in AdS_5 and S^5 as well as three cases of circular two-spin strings we demonstrate the universality of transcendental (zeta-function) parts of few leading coefficients. We also show the consistency with target space supersymmetry with different states belonging to the same multiplet having the same non-trivial part of the energy. We suggest, in particular, that a rational coefficient (found by Basso for the folded string using Bethe Ansatz considerations and which, in general, is yet to be determined by a direct two-loop string calculation) should, in fact, be universal.Comment: 42p, Latex v2: Comments and summary table of coefficients added v3: misprints corrected; dependence on winding number added in appendix

    Wilson loop in general representation and RG flow in 1d defect QFT

    Get PDF
    The generalized Wilson loop operator interpolating between the supersymmetric and the ordinary Wilson loop in N=4 SYM theory provides an interesting example of renormalization group flow on a line defect: the scalar coupling parameter ζ has a non-trivial beta function and may be viewed as a running coupling constant in a 1d defect QFT. In this paper we continue the study of this operator, generalizing previous results for the beta function and Wilson loop expectation value to the case of an arbitrary representation of the gauge group and beyond the planar limit. Focusing on the scalar ladder limit where the generalized Wilson loop reduces to a purely scalar line operator in a free adjoint theory, and specializing to the case of the rank k symmetric representation of SU(N), we also consider a certain semiclassical limit where k is taken to infinity with the product kζ2 fixed. This limit can be conveniently studied using a 1d defect QFT representation in terms of N commuting bosons. Using this representation, we compute the beta function and the circular loop expectation value in the large k limit, and use it to derive constraints on the structure of the beta function for general representation. We discuss the corresponding 1d RG flow and comment on the consistency of the results with the 1d defect version of the F-theorem

    AdS Description of Induced Higher-Spin Gauge Theory

    Full text link
    We study deformations of three-dimensional large N CFTs by double-trace operators constructed from spin s single-trace operators of dimension \Delta. These theories possess UV fixed points, and we calculate the change of the 3-sphere free energy \delta F= F_{UV}- F_{IR}. To describe the UV fixed point using the dual AdS_4 space we modify the boundary conditions on the spin s field in the bulk; this approach produces \delta F in agreement with the field theory calculations. If the spin s operator is a conserved current, then the fixed point is described by an induced parity invariant conformal spin s gauge theory. The low spin examples are QED_3 (s=1) and the 3-d induced conformal gravity (s=2). When the original CFT is that of N conformal complex scalar or fermion fields, the U(N) singlet sector of the induced 3-d gauge theory is dual to Vasiliev's theory in AdS_4 with alternate boundary conditions on the spin s massless gauge field. We test this correspondence by calculating the leading term in \delta F for large N. We show that the coefficient of (1/2)\log N in \delta F is equal to the number of spin s-1 gauge parameters that act trivially on the spin s gauge field. We discuss generalizations of these results to 3-d gauge theories including Chern-Simons terms and to theories where s is half-integer. We also argue that the Weyl anomaly a-coefficients of conformal spin s theories in even dimensions d, such as that of the Weyl-squared gravity in d=4, can be efficiently calculated using massless spin s fields in AdS_{d+1} with alternate boundary conditions. Using this method we derive a simple formula for the Weyl anomaly a-coefficients of the d=4 Fradkin-Tseytlin conformal higher-spin gauge fields. Similarly, using alternate boundary conditions in AdS_3 we reproduce the well-known central charge c=-26 of the bc ghosts in 2-d gravity, as well as its higher-spin generalizations.Comment: 62 pages, 1 figure; v2 refs added, minor improvements; v3 refs added, minor improvement

    Constraining conformal field theories with a slightly broken higher spin symmetry

    Full text link
    We consider three dimensional conformal field theories that have a higher spin symmetry that is slightly broken. The theories have a large N limit, in the sense that the operators separate into single trace and multitrace and obey the usual large N factorization properties. We assume that the spectrum of single trace operators is similar to the one that one gets in the Vasiliev theories. Namely, the only single trace operators are the higher spin currents plus an additional scalar. The anomalous dimensions of the higher spin currents are of order 1/N. Using the slightly broken higher spin symmetry we constrain the three point functions of the theories to leading order in N. We show that there are two families of solutions. One family can be realized as a theory of N fermions with an O(N) Chern-Simons gauge field, the other as a N bosons plus the Chern-Simons gauge field. The family of solutions is parametrized by the 't Hooft coupling. At special parity preserving points we get the critical O(N) models, both the Wilson-Fisher one and the Gross-Neveu one. Our analysis also fixes the on shell three point functions of Vasiliev's theory on AdS_4 or dS_4.Comment: 54 pages, 3 figure

    Supersymmetric Chern-Simons Theories with Vector Matter

    Full text link
    In this paper we discuss SU(N) Chern-Simons theories at level k with both fermionic and bosonic vector matter. In particular we present an exact calculation of the free energy of the N=2 supersymmetric model (with one chiral field) for all values of the 't Hooft coupling in the large N limit. This is done by using a generalization of the standard Hubbard-Stratanovich method because the SUSY model contains higher order polynomial interactions.Comment: 46 pages, 24 figures, v2: comments and references added, v3: a footnote in Section 3.5 adde

    Accidental Symmetries and the Conformal Bootstrap

    Full text link
    We study an N=2{\cal N} = 2 supersymmetric generalization of the three-dimensional critical O(N)O(N) vector model that is described by N+1N+1 chiral superfields with superpotential W=g1XiZi2+g2X3W = g_1 X \sum_i Z_i^2 + g_2 X^3. By combining the tools of the conformal bootstrap with results obtained through supersymmetric localization, we argue that this model exhibits a symmetry enhancement at the infrared superconformal fixed point due to g2g_2 flowing to zero. This example is special in that the existence of an infrared fixed point with g1,g20g_1,g_2\neq 0, which does not exhibit symmetry enhancement, does not generally lead to any obvious unitarity violations or other inconsistencies. We do show, however, that the FF-theorem excludes the models with g1,g20g_1,g_2\neq 0 for N>5N>5. The conformal bootstrap provides a stronger constraint and excludes such models for N>2N>2. We provide evidence that the g2=0g_2=0 models, which have the enhanced O(N)×U(1)O(N)\times U(1) symmetry, come close to saturating the bootstrap bounds. We extend our analysis to fractional dimensions where we can motivate the nonexistence of the g1,g20g_1,g_2\neq 0 models by studying them perturbatively in the 4ϵ4-\epsilon expansion.Comment: 26 pages, 5 figure
    corecore